Enhanced Thermoelectric Properties of Graphene/Cu2SnSe3 Composites
نویسندگان
چکیده
Cu2SnSe3 material is regarded as a potential thermoelectric material due to its relatively high carrier mobility and low thermal conductivity. In this study, graphene was introduced into the Cu2SnSe3 powder by ball milling, and the bulk graphene/Cu2SnSe3 thermoelectric composites were prepared by spark plasma sintering. The graphene nanosheets distributed uniformly in the Cu2SnSe3 matrix. Meanwhile, some graphene nanosheets tended to form thick aggregations, and the average length of these aggregations was about 3 μm. With the fraction of graphene increasing, the electrical conductivity of graphene/Cu2SnSe3 samples increased greatly while the Seebeck coefficient was decreased. The introduction of graphene nanosheets can reduce the thermal conductivity effectively resulting from the phonon scattering by the graphene interface. When the content of graphene exceeds a certain value, the thermal conductivity of graphene/Cu2SnSe3 composites starts to increase. The achieved highest figure of merit (ZT) for 0.25 vol % graphene/Cu2SnSe3 composite was 0.44 at 700 K.
منابع مشابه
Synthesis and Thermoelectric Properties of TiO2/Cu2SnSe3 Composites
Thermoelectric (TE) materials are a kind of energy material which can directly convert waste heat into electricity based on TE effects. Ternary Cu2SnSe3 material with diamond-like structure has become one of the potential TE materials due to its low thermal conductivity and adjustable electrical conductivity. In this study, the Cu2SnSe3 powder was prepared by vacuum melting-quenching-annealing-...
متن کاملThe effect of temperature on thermoelectric properties of n-type Bi2Te3 nanowire/graphene layer-by-layer hybrid composites.
The thermoelectric properties of Bi2Te3 nanowire/graphene composites prepared at different sintering temperatures have been investigated. The as-synthesized ultrathin Bi2Te3 nanowires are uniformly distributed between the graphene layers, leading to the formation of Bi2Te3 nanowire/graphene layer-by-layer hybrid structures. The electrical conductivity of the as-sintered composites increases dra...
متن کاملEnhanced Thermoelectric Performance of Cu2SnSe3-Based Composites Incorporated with Nano-Fullerene
In this study, nano-sized fullerene C60 powder was sufficiently mixed with Cu₂SnSe₃ powder by ball milling method, and the C60/Cu₂SnSe₃ composites were prepared by spark plasma sintering technology. The fullerene C60 distributed uniformly in the form of clusters, and the average cluster size was less than 1 μm. With increasing C60 content, the electrical conductivity of C60/Cu₂SnSe₃ composites ...
متن کاملEnhancing thermoelectric properties of organic composites through hierarchical nanostructures
Organic thermoelectric (TE) materials are very attractive due to easy processing, material abundance, and environmentally-benign characteristics, but their potential is significantly restricted by the inferior thermoelectric properties. In this work, noncovalently functionalized graphene with fullerene by π-π stacking in a liquid-liquid interface was integrated into poly(3,4-ethylenedioxythioph...
متن کاملThermoelectric Responsive Shape Memory Graphene/Hydro-Epoxy Composites for Actuators
A series of thermoelectric responsive shape memory hydro-epoxy (H-EP) composites filled with different contents of graphene were developed and characterized. Compared with traditional actuation materials, these novel shape memory composites exhibit attractive properties, such as light weight, large deformation, good processability and high response speed, making them good candidates for actuato...
متن کامل